## Calf Notes.com

Calf Note #238 – Aminoácidos para bezerros jovens, Parte 1 - Complexidade

Autor: [im Quigley

**Traduzido por:** Rayce Ferreira e Rafael Azevedo

## Introdução

Nos próximos Calf Notes, revisarei o estado atual da nutrição de aminoácidos em bezerros jovens durante os primeiros 4 meses de vida e apontarei alguns das armadilhas e desafios que enfrentamos na nutrição de aminoácidos para bezerros jovens, que está entre os tópicos mais complexos em nutrição animal.

Os bezerros começam suas vidas como monogástricos e usam aminoácidos do leite ou sucedâneo que consomem. No entanto, em algum momento mais tarde na vida, sua digestão muda completamente para a de um animal ruminante e, portanto, eles utilizam uma combinação de proteína microbiana e dietética não degradada como fontes de aminoácidos para as necessidades de manutenção e crescimento.

Se os bezerros fossem apenas monogástricos ou apenas ruminantes, o cálculo do suprimento de aminoácidos seria mais direto e poderíamos utilizar os modelos existentes – para porcos (monogástricos) ou vacas (ruminantes) para estimar o fluxo de aminoácidos. No entanto, a transição da digestão monogástrica para a fermentação e digestão ruminante durante as primeiras 8 a 12 semanas de idade torna a previsão do fluxo de aminoácidos extremamente desafiadora. Até o momento, não temos modelos funcionais de suprimento de aminoácidos durante esse período crítico da vida.

## Um grande passo

As Exigências de Nutrientes do Gado Leiteiro (NASEM, 2021) previu as exigências de nutrientes para bezerros jovens. Eles incluíram uma nova abordagem significativa para prever o suprimento de proteína metabolizável (PM) em bezerros jovens até 4 meses de idade. Essa abordagem para prever o suprimento de PM pode logicamente ser estendida ao suprimento de aminoácidos, embora não haja estudos publicados (que eu saiba) que apoiem a abordagem de modelagem adotada pelo Comitê. Vamos dar uma olhada na nova abordagem para prever o fornecimento de PM.

Durante a "fase de transição", o sistema digestivo do bezerro muda em resposta à mudança de substrato. À medida que o bezerro começa a comer concentrado, as bactérias no rúmen começam a fermentar carboidratos não fibrosos para produzir ácidos graxos voláteis (especialmente butirato e propionato) que induzem alterações metabólicas no rúmen e em outros tecidos do animal. Além disso, a fermentação bacteriana de carboidratos e proteínas degradáveis aumenta a quantidade de biomassa bacteriana que sai do rúmen e chega ao intestino delgado como fonte de aminoácidos para o bezerro. Essencialmente, o bezerro está se tornando um ruminante, e a proporção de proteína microbiana para proteína total que chega ao intestino aumenta. Inicialmente, há pouca contribuição microbiana para a nutrição total de aminoácidos, já que o bezerro recebe a maior parte de seus aminoácidos via leite ou sucedâneo.

O NASEM de 2021 publicou uma meta-análise da mudança na contribuição da proteína microbiana para a proteína total que chega ao intestino com o aumento da ingestão de concentrado de bezerro (Figura 1). Podemos ver que no início da vida, antes de o bezerro consumir qualquer concentrado, a contribuição total de proteína microbiana que chega ao intestino é muito baixa, mas aumenta à medida que o bezerro come mais concentrado, o que impulsiona o desenvolvimento do rúmen. No momento em que o bezerro consome 1,3 kg de ração inicial, a contribuição do nitrogênio microbiano para o nitrogênio total que atinge o intestino

atinge um máximo de cerca de 60%. Ou seja, 60% do nitrogênio que chega ao intestino é de origem microbiana e isso não muda depois disso. Assim, o ponto máximo (ou seja, 1,3 kg/d de consumo de concentrado) indica quando nossos bezerros estão funcionando como ruminantes maduros. Embora o rúmen ainda seja pequeno, parece estar funcionando "normalmente" e mudando a natureza da proteína que chega ao intestino.

Por que isso é importante? Bem, o perfil de aminoácidos das proteínas do leite, das proteínas dietéticas não degradadas e das proteínas microbianas difere e essa dinâmica de mudança afetará a quantidade de cada aminoácido que chega ao intestino.

Vejamos um exemplo hipotético. Alimentaremos um bezerro com 800 g/dia de sucedâneo do leite desde o nascimento até o desmame aos 64 dias. O substituto do leite (SLB) contém 24% de proteína (base seca ao ar) e 8% da proteína é lisina. Também alimentaremos um bezerro iniciante aos 60 dias contendo 20% de PB e 4% dessa proteína é Lisina. A partir do dia 61, ofereceremos uma ração de crescimento contendo 18% PB (4% de PB como Lisina) e feno de trevo com 16% de PB (5% de PB = Lisina).

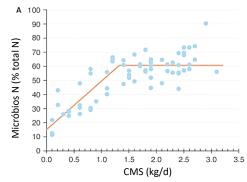



Figura 1. Mudança no fluxo de N microbiano para o intestino como % do N total. Fonte; 2021 NASEM Exigências Nutricionais de Bovinos Leiteiros.

Se usarmos a equação de Quigley et al. (2021) para prever o consumo de ração seca e o gráfico da Figura 1 para particionar a proteína microbiana (que contém 9,3% de

proteína como Lys) e assumir que o fluxo de N = consumo de N (uma suposição feita pela NASEM), podemos estimar o fluxo de Lisina de cada fonte. A tabela mostra a mudança na fonte de lisina conforme o bezerro consome quantidades crescentes de ração seca.

O fluxo estimado de Lisina para o bezerro aumenta de 13 g/dia aos 7 dias de idade para 35 g/dia aos 63 dias de idade e não muda para 70 dias de idade devido ao desmame. A contribuição da proteína microbiana bruta (PBmic) e da proteína não degradada no rúmen (PNDR) aumenta com o aumento da idade e o consumo de ração seca.

A implicação dessas mudanças dinâmicas no suprimento de MP e aminoácidos é importante e abordaremos como essas mudanças afetam nossas previsões de crescimento. Também veremos pesquisas que suplementaram aminoácidos em CMR e rações.

Tabela 1. Fluxo previsto de lisina de sucedâneo de bezerro (S), proteína microbiana bruta (PBmic) e proteína não degradada no rúmen (PNDR) em bezerros de 7 a 70 dias de idade.

| Fluxo de lisina, g/d |      |       |      |       |      |
|----------------------|------|-------|------|-------|------|
| Idade, d             | S    | PBmic | PNDR | Total | S, % |
| 7                    | 13,1 | 0,1   | 0,2  | 13,3  | 98   |
| 14                   | 13,5 | 0,2   | 0,5  | 14,2  | 95   |
| 21                   | 13,9 | 0,5   | 1,0  | 15,3  | 91   |
| 28                   | 14,2 | 1,1   | 1,8  | 17,1  | 83   |
| 35                   | 14,2 | 2,3   | 3,1  | 20,1  | 71   |
| 42                   | 14,2 | 4,3   | 4,7  | 23,2  | 61   |
| 49                   | 14,2 | 7,1   | 6,3  | 27,6  | 51   |
| 56                   | 14,2 | 10,5  | 7,9  | 32,7  | 43   |
| 63                   | 14,2 | 11,7  | 8,7  | 34,6  | 41   |
| 70                   | 0    | 19,7  | 14,8 | 34,5  | 0    |

Escrito por Dr. Jim Quigley (23 de dezembro 2022) © 2022 by Dr. Jim Quigley Calf Notes.com (https://www.calfnotes.com)